Dešimtainis skaičius yra skaitmenų suma, padauginta iš 10 galios.
137 bazėje 10 yra lygus kiekvienam skaitmeniui, padaugintam iš jo atitinkamos galios 10:
137 10 = 1 × 10 2 + 3 × 10 1 + 7 × 10 0 = 100 + 30 + 7
Šešioliktainiai skaičiai skaitomi tuo pačiu būdu, tačiau kiekvienas skaitmuo skaičiuoja 16, o ne 10 galią.
Padauginkite kiekvieną šešioliktainio skaičiaus skaitmenį iš jo atitinkamos galios 16.
3B bazėje 16 yra lygus kiekvienam skaitmeniui, padaugintam iš jo atitinkamos galios 16:
3B 16 = 3 × 16 1 + 11 × 16 0 = 48 + 11 = 59
E7A9 16 bazėje yra lygus kiekvienam skaitmeniui, padaugintam iš jo atitinkamos galios 16:
E7A9 16 = 14 × 16 3 + 7 × 16 2 + 10 × 16 1 + 9 × 16 0 = 57344 + 1792 + 160 + 9 = 59305
Kaip konvertuoti dešimtainę į šešiakampę ►