Jak násobit exponenty.
U exponentů se stejnou základnou bychom měli přidat exponenty:
a n ⋅ a m = a n + m
Příklad:
2 3 ⋅ 2 4 = 2 3 + 4 = 2 7 = 2⋅2⋅2⋅2⋅2⋅2⋅2 = 128
Když jsou báze diffenentní a exponenty a a b jsou stejné, můžeme nejprve vynásobit a a b:
a n ⋅ b n = ( a ⋅ b ) n
Příklad:
3 2 ⋅ 4 2 = (3⋅4) 2 = 12 2 = 12⋅12 = 144
Když se základy a exponenty liší, musíme každý exponent vypočítat a poté vynásobit:
a n ⋅ b m
Příklad:
3 2 ⋅ 4 3 = 9 ⋅ 64 = 576
U exponentů se stejnou základnou můžeme přidat exponenty:
a -n ⋅ a -m = a - ( n + m ) = 1 / a n + m
Příklad:
2 -3 ⋅ 2 -4 = 2 - (3 + 4) = 2 -7 = 1/2 7 = 1 / (2⋅2⋅2⋅2⋅2⋅2⋅2) = 1/128 = 0,0078125
Když jsou báze diffenentní a exponenty a a b jsou stejné, můžeme nejprve vynásobit a a b:
a -n ⋅ b -n = ( a ⋅ b ) -n
Příklad:
3 -2 ⋅ 4 -2 = (3⋅4) -2 = 12 -2 = 1/12 2 = 1 / (12⋅12) = 1/144 = 0,0069444
Když se základy a exponenty liší, musíme každý exponent vypočítat a poté vynásobit:
a -n ⋅ b -m
Příklad:
3 -2 ⋅ 4 -3 = (1/9) ⋅ (1/64) = 1/576 = 0,0017361
Násobení zlomků exponenty se stejnou základnou zlomků:
( a / b ) n ⋅ ( a / b ) m = ( a / b ) n + m
Příklad:
(4/3) 3 ⋅ (4/3) 2 = (4/3) 3 + 2 = (4/3) 5 = 4 5 /3 5 = 4,214
Násobení zlomků exponenty se stejným exponentem:
( a / b ) n ⋅ ( c / d ) n = (( a / b ) ⋅ ( c / d )) n
Příklad:
(4/3) 3 ⋅ (3/5) 3 = ((4/3) ⋅ (3/5)) 3 = (4/5) 3 = 0,8 3 = 0,8⋅0,8⋅0,8 = 0,512
Násobení zlomků exponenty s různými bázemi a exponenty:
( a / b ) n ⋅ ( c / d ) m
(4/3) 3 ⋅ (1/2) 2 = 2,37 ⋅ 0,25 = 0,5925
Násobení zlomkových exponentů stejným zlomkovým exponentem:
a n / m ⋅ b n / m = ( a ⋅ b ) n / m
Příklad:
2 3/2 ⋅ 3 3/2 = (2⋅3) 3/2 = 6 3/2 = √ ( 6 3 ) = √ 216 = 14,7
Násobení zlomkových exponentů se stejnou základnou:
a ( n / m ) ⋅ a ( k / j ) = a [( n / m ) + ( k / j )]
Příklad:
2 (3/2) ⋅ 2 (4/3) = 2 [(3/2) + (4/3)] = 7,127
Násobení zlomkových exponentů různými exponenty a zlomky:
a n / m ⋅ b k / j
2 3/2 ⋅ 2 4/3 = √ (2 3 ) ⋅ 3 √ (2 4 ) = 2,828 ⋅ 2,52 = 7,127
U exponentů se stejnou základnou můžeme přidat exponenty:
(√ a ) n ⋅ ( √ a ) m = a ( n + m ) / 2
Příklad:
(√ 5 ) 2 ⋅ ( √ 5 ) 4 = 5 (2 + 4) / 2 = 5 6/2 = 5 3 = 125
U exponentů se stejnou základnou můžeme přidat exponenty:
x n ⋅ x m = x n + m
Příklad:
x 2 ⋅ x 3 = ( x⋅x ) ⋅ ( x⋅x⋅x ) = x 2 + 3 = x 5