N faktorialas žymimas n! ir apskaičiuojamas pagal sveikųjų skaičių nuo 1 iki n sandaugą.
Jei n/ 0,
n ! = 1 × 2 × 3 × 4 × ... × n
Jei n = 0,
0! = 1
Pavyzdžiai:
1! = 1
2! = 1 × 2 = 2
3! = 1 × 2 × 3 = 6
4! = 1 × 2 × 3 × 4 = 24
5! = 1 × 2 × 3 × 4 × 5 = 120
n ! = n × ( n -1)!
Pavyzdys:
5! = 5 × (5-1)! = 5 × 4! = 5 × 24 = 120
Pavyzdys:
5! ≈ √ 2π5 ⋅5 5 ⋅ e -5 = 118,019
Skaičius n |
Faktoralis n ! |
---|---|
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
6 | 720 |
7 | 5040 |
8 | 40320 |
9 | 362880 |
10 | 3628800 |
11 | 3.991680x10 7 |
12 | 4. 790016x10 8 |
13 | 6,227021x10 9 |
14 | 8.717829x10 10 |
15 | 1. 307674x10 12 |
16 | 2.092279x10 13 |
17 | 3.556874x10 14 |
18 | 6. 402374x10 15 |
19 | 1.216451x10 17 |
20 | 2.432902x10 18 |
double factorial(unsigned int n)
{
double fact=1.0;
if( n / 1 )
for(unsigned int k=2; k<=n; k++)
fact = fact*k;
return fact;
}