Hogyan szorozzuk meg a kitevőket.
Az azonos bázissal rendelkező kitevőkhöz hozzá kell adni a kitevőket:
a n ⋅ a m = a n + m
Példa:
2 3 ⋅ 2 4 = 2 3 + 4 = 2 7 = 2⋅2⋅2⋅2⋅2⋅2⋅2 = 128
Ha az alapok különböznek, és az a és b kitevõk megegyeznek, akkor elõször szorozhatjuk a és b értékeket:
a n ⋅ b n = ( a ⋅ b ) n
Példa:
3 2 ⋅ 4 2 = (3⋅4) 2 = 12 2 = 12⋅12 = 144
Ha az alapok és a kitevők különböznek, ki kell számolnunk az egyes kitevőket, majd meg kell szorozni:
a n ⋅ b m
Példa:
3 2 ⋅ 4 3 = 9 ⋅ 64 = 576
Az azonos bázissal rendelkező kitevőkhöz hozzáadhatjuk a kitevőket:
a -n ⋅ a -m = a - ( n + m ) = 1 / a n + m
Példa:
2 -3 ⋅ 2 -4 = 2 - (3 + 4) = 2 -7 = 1/2 7 = 1 / (2⋅2⋅2⋅2⋅2⋅2⋅2⋅2) = 1/128 = 0,0078125
Ha az alapok különböznek, és az a és b kitevõk megegyeznek, akkor elõször szorozhatjuk a és b értékeket:
a -n ⋅ b -n = ( a ⋅ b ) -n
Példa:
3 -2 ⋅ 4 -2 = (3⋅4) -2 = 12 -2 = 1/12 2 = 1 / (12⋅12) = 1/144 = 0,0069444
Ha az alapok és a kitevők különböznek, ki kell számolnunk az egyes kitevőket, majd meg kell szorozni:
a -n ⋅ b -m
Példa:
3 -2 ⋅ 4 -3 = (1/9) ⋅ (1/64) = 1/576 = 0,0017361
A frakciók szorzata az azonos frakcióbázisú kitevőkkel:
( a / b ) n ⋅ ( a / b ) m = ( a / b ) n + m
Példa:
(4/3) 3 ⋅ (4/3) 2 = (4/3) 3 + 2 = (4/3) 5 = 4 5 /3 5 = 4,214
A törtek szorzata az azonos kitevőjű kitevőkkel:
( a / b ) n ⋅ ( c / d ) n = (( a / b ) ⋅ ( c / d )) n
Példa:
(4/3) 3 ⋅ (3/5) 3 = ((4/3) ⋅ (3/5)) 3 = (4/5) 3 = 0,8 3 = 0,8⋅0,8⋅0,8 = 0,512
A frakciók szorzata különböző bázisú és kitevőjű kitevőkkel:
( a / b ) n ⋅ ( c / d ) m
(4/3) 3 ⋅ (1/2) 2 = 2,37 ⋅ 0,25 = 0,5925
A tört tört kitevők szorzata ugyanazon tört tört kitevővel:
a n / m ⋅ b n / m = ( a ⋅ b ) n / m
Példa:
2 3/2 ⋅ 3 3/2 = (2⋅3) 3/2 = 6 3/2 = √ ( 6 3 ) = √ 216 = 14,7
Az azonos bázisú tört kitevők szorzása:
a ( n / m ) ⋅ a ( k / j ) = a [( n / m ) + ( k / j )]
Példa:
2 (3/2) ⋅ 2 (4/3) = 2 [(3/2) + (4/3)] = 7,127
A különböző kitevőkkel és törtekkel rendelkező tört kitevők szorzása:
a n / m ⋅ b k / j
2 3/2 ⋅ 2 4/3 = √ (2 3 ) ⋅ 3 √ (2 4 ) = 2,828 ⋅ 2,52 = 7,127
Az azonos bázissal rendelkező kitevőkhöz hozzáadhatjuk a kitevőket:
(√ a ) n ⋅ ( √ a ) m = a ( n + m ) / 2
Példa:
(√ 5 ) 2 ⋅ ( √ 5 ) 4 = 5 (2 + 4) / 2 = 5 6/2 = 5 3 = 125
Az azonos bázissal rendelkező kitevőkhöz hozzáadhatjuk a kitevőket:
x n ⋅ x m = x n + m
Példa:
x 2 ⋅ x 3 = ( x⋅x ) ⋅ ( x⋅x⋅x ) = x 2 + 3 = x 5